在过去一段时间内,我专注在以下研究工作上。
I focus on the following interesting topics.
可靠的低功耗无线网络协议 – Dependable Low-Power Wireless Protocols:
随着传感技术的不断发展和低功耗无线通信技术的不断普及,大量的物联网设备(例如配备低功耗蓝牙通信功能的智能手环、支持Zigbee通信的室内温度传感器等)正在改变着人们的日常生活。然而,作为核心技术之一的低功耗无线通信技术似乎还没有完全做好准备:当使用环境存在复杂多变的射频干扰时(例如智能手环靠近了正在传输文件的Wi-Fi路由器、蓝牙音箱被放在了正在工作的微波炉附近等等),现有的物联网设备大都很难继续正常的通信,从而严重影响其功能。简单直接地提高射频通信的发射功率往往又会影响这些电池供电设备的使用时间。因此,为了使物联网设备能够在实际应用中可靠工作,对现有的低功耗无线通信及其协议进行优化是一项不得不开展的工作。我和我的同事所提出的工作能够使现有的低功耗物联网传感器节点在持续强无线干扰下(例如日常生活中微波炉大火对食物进行加热所产生的射频干扰)实现通信[realWSN’18],使多跳网络能够可靠稳定地工作在具有动态射频干扰(例如Wi-Fi传输文件等)的场景中[EWSN’17, EWSN’18, IEEEAccess, EWSN’19, INFOCOM’20, ICNP’20]。
低功耗广域网测试平台 – Testbed for Low-Power Wide Area Networks:

A ChirpBox node in the campus
随着SigFox、LoRa以及NB-IoT等远距离无线通信技术的兴起,低功耗广域网已然成为一个炙手可热的话题。无论是低功耗无线通信协议领域的研究者还是物联网工程师,都迫切地需要一个网络测试平台来观察在实际场景下低功耗广域网设备是如何工作的,从而来优化他们的设计。然而,按照传统思想设计的低功耗广域网测试平台会需要大量的基础设施支持(例如以太网、4G通信以及相关的嵌入式观测记录设备等等),这无疑是需要消耗大量的人力财力的,同样也是这样的测试平台并不多见的原因。我和我的同事,以LoRa通信为例,提出了一种无需依赖基础设施(无需任何网络基础设施、无需专有的服务器、无需额外的通信资费、无需额外的嵌入式观测记录设备、甚至无需供电)的低功耗广域网测试平台方案[EWSN’20, EWSN’21, ACM DATA’21]。
The breakthrough of long range communication technology (e.g., SigFox, LoRa, and NB-IoT, etc.) brings a wide attention to Low-Power Wide Area Networks (LPWANs). IoT researchers/builders desire to have a testbed for LPWANs to observe nodes’ behaviors, thereby optimizing their design or fixing bugs. Conventionally, such a testbed for LPWANs requires infrastructures (e.g., a backbone Ethernet, cellular networks, and extra embedded platforms to monitor nodes’ energy consumption, etc.), which means building such a testbed needs for substantial investments of financial and human resources. This is why testbeds for LPWANs are not common. My colleagues and I developed an infrastructure-less testbed for LoRa (no need for network infrastructure, dedicated server, and extra embedded platforms for monitoring, without servicing costs on data traffic, and even without power cables) [EWSN’20, EWSN’21, ACM DATA’21].
低功耗无线通信优化 – Low-Power Wireless Communication Optimization:

低功耗无线通信技术是实现物联网概念中“物物相连”的关键。物联网开发者/研究人员往往可以使用射频收发芯片快速集成此类技术。然而,在享受射频收发芯片为开发工作所带来的便捷的同时,开发者也难以对针对某些应用进行进一步的物理层或者编解码方面的性能优化(因为很多技术细节被隐藏在芯片实现中)。受到软件定义射频(SDR)的启发,我们对现有射频芯片进行了“探索”,通过“巧妙使用”(例如充分利用一些芯片自带的射频自测功能),实现了对低功耗多跳无线网络的吞吐量优化[COMNET]以及对LoRa通信功耗优化[IPSN’22]。
Low-power wireless communication technology is key for achieving the concept of “connecting objects”. IoT researchers/builders can make use of a low-power radio transceiver to integrate such communication technology easily. However, developers are difficult to carry out further optimization on the physical layer or the CoDec to achieve more awesome performance in some specific applications because details are hidden in the chip implementation. Inspired by the thought of software defined radio (SDR), we optimize the throughput of multi-hop all-to-one networks [COMNET] and energy consumption for LoRa [IPSN’22] via some “tricky” operations and even reverse engineerings over existing low-power wireless transceivers.

Photo by Xiaoyuan Ma at Uppsala, 2017